HOLA: a High-Order Lie Advection of Discrete Differential Forms
With Applications in Fluid Dynamics
里面的公式(1.16)。
它的涡量是:
\omega=\frac{V}{R}\left(2-\frac{r^2}{R^2}\right)e^{\frac{1}{2}\left(1-\frac{r^2}{R^2}\right)}.
这个就是所谓的泰勒涡,文章
Effect of vortex profile on sound generation in a non-uniform flow
里面的公式(1),说是Taylor提出的。在柱坐标(r,\theta,z)下公式为:
(v_r,v_\theta,v_z)=\left(0,V\frac{r}{R}e^{\frac{1}{2}\left(1-\frac{r^2}{R^2}\right)},0\right)
其中V是最大速度,R是“涡泡”vortex blob的半径。加了个指数衰减的目的是避免在原点出现奇异点。注意到柱坐标下的旋度公式为
\nabla\times\bm{v}=\left(\frac{1}{r}\frac{\partial v_z}{\partial \theta}-\frac{\partial v_\theta}{\partial z}\right)\bm{e}_r+\left(\frac{\partial v_r}{\partial z}-\frac{\partial v_z}{\partial r}\right)\bm{e}_\theta\\
+\frac{1}{r}\left(\frac{\partial(rv_\theta)}{\partial r}-\frac{\partial v_r}{\partial \theta}\right)\bm{e}_z.
其中v_r=v_z=0,v_\theta和\theta,z无关,可以发现只有\frac{\partial(rv_\theta)}{\partial r}一项留了下来,也就是
\nabla\times \bm{v}=\frac{1}{r}\left(\frac{\partial(rv_\theta)}{\partial r}\right)\bm{e}_z.
用如下MATLAB程序计算导数:
syms r theta V R real
vtheta = V*r/R*exp(0.5*(1-(r^2/R^2))) % your expression for v_theta in terms of r, theta, and z
% Calculate the components of the curl
curl_z = (1/r) * (diff(r*vtheta, r));
% Display the curl components
disp('Curl components:');
disp(['curl_z = ', char(curl_z)]);
得到的结果是:
\omega =\frac{V}{R}\left(2-\frac{r^2}{R^2}\right)e^{\frac{1}{2}\left(1-\frac{r^2}{R^2}\right)}
算出来和第一个式子是一致的。